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Abstract

In this article, we introduced the solutions of the following difference equations

𝑧𝑛+1 =
𝑧𝑛−4𝑧𝑛−5

𝑧𝑛 (±1 ± 𝑧𝑛−4𝑧𝑛−5)
, 𝑛 = 0, 1, 2, ...,

where the initial conditions 𝑧−5, 𝑧−4, 𝑧−3, 𝑧−2, 𝑧−1 and 𝑧0 are arbitrary non-zero real numbers.

Moreover, we presented the solutions of some special cases of these equations and studied

the dynamic behavior of the these equations. Finally, we obtained the estimation of the initial

coefficients.

Keywords: Difference equation, stability, linearized stability, periodicity.

1 Introduction

Recently, there has been great interest in studying difference equation systems. One of the

reasons for this is a necessity for some techniques which can be used in investigating equations

arising in mathematical models describing real life situations in population biology, economic,

probability theory, genetics, psychology etc. Difference equations become apparent in the study of
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discretization methods for differential equations. Differential equation results have been discovered

to produce some results in the theory of difference equations that are more or less natural discrete

analogues. For additional results from the research of the rational difference equation see ([1],[61]).

Alayachi et al. [1] interested in studying the global attractivity, boundedness character and the

periodic nature of the following nonlinear difference equation

𝑧𝑛+1 = 𝑎𝑧𝑛−1 +
𝑏𝑧𝑛−1

𝑐𝑧𝑛−1 − 𝑑𝑧𝑛−3
.

Khalaf-Allah in [40] obtained the formulae of solutions of the difference equations

𝑧𝑛+1 =
𝑧𝑛−2

±1 + 𝑧𝑛𝑧𝑛−1𝑧𝑛−2
.

Also, he studied the global asymptotic stability of the equilibrium points of these equations via the

formulae.

In [36], Gumus and Abo-Zeid determined the forbidden set, introduced an explicit formula for the

solutions and discussed the global behavior of solutions of the difference equation

𝑧𝑛+1 =
𝑎𝑧𝑛𝑧𝑛−𝑘+1

𝑏𝑧𝑛−𝑘+1 + 𝑐𝑧𝑛−𝑘
.

Okumus and Soykan [48] investigated the stability character, the periodicity and the global behavior

of solutions of the following four rational difference equations

𝑧𝑛+1 =
±1

𝑧𝑛 (𝑧𝑛−1 ± 1) − 1
, 𝑧𝑛+1 =

±1
𝑧𝑛 (𝑧𝑛−1 ± 1) + 1

,

In [58], Zhang et al. demonstrated the existence of bounded, asymptotic behavior and the periodicity

of the following difference equation

𝑧𝑛+1 = 𝐴 + 𝑧𝑛

𝑧𝑛−1𝑧𝑛−2
.

Elabbasy et al. in [10] studied the qualitative behavior of the solution of the recursive sequence

𝑧𝑛+1 = 𝑎 + 𝑑𝑧𝑛−𝑙𝑧𝑛−𝑘
𝑐𝑧𝑛−𝑠 − 𝑏

.

El-Moneam et al. [13] investigated the local stability, global stability and bounded of solutions of

the difference equations
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𝑧𝑛+1 = 𝑧𝑛−𝑝

(2𝑧𝑛−𝑞 + 𝑧𝑛−𝑟
𝑧𝑛−𝑞 + 𝑧𝑛−𝑟

)
.

AbdelKhaliq and Elsayed in [42] studied the solution and periodic of the following difference

equations

𝑧𝑛+1 =
𝑧𝑛−1𝑧𝑛−5

𝑧𝑛−3(±1 ± 𝑧𝑛−1𝑧𝑛−5)
.

In this paper, we will investigate the form of solutions and the global asymptotic behavior of the

following recursive sequences

𝑧𝑛+1 =
𝑧𝑛−4𝑧𝑛−5

𝑧𝑛 (±1 ± 𝑧𝑛−4𝑧𝑛−5)
, 𝑛 = 0, 1, 2, ... .

Now, we will introduce some of definitions and theorems that are used in solving the special cases

of difference equations:

Definition 1. Let 𝐼 be some interval of real numbers and let

𝐹 : 𝐼 𝑘+1 → 𝐼,

be continuously differentiable function. Then for every set of initial condition 𝑥−𝑘 , 𝑥−𝑘+1, ..., 𝑥0 ∈

𝐼,the difference equation

𝑥𝑛+1 = 𝐹 (𝑥𝑛, 𝑥𝑛−1, 𝑥𝑛−2, ..., 𝑥𝑛−𝑘 ), 𝑛 = 0, 1, ..., (1.1)

has a unique solution {𝑥𝑛}∞𝑛=−𝑘 .

Definition 2. A point 𝑥∗ ∈ 𝐼 is called an equilibrium point of Eq.(1.1 )if

𝑥∗ = 𝐹 (𝑥∗, 𝑥∗, ..., 𝑥∗),

that is, 𝑥𝑛 = 𝑥∗ for 𝑛 ≥ 0. is a solution of Eq.(1.1), or equivalently, 𝑥∗ is a fixed point.

Definition 3. (Stability)

Let 𝑥∗ be an equilibrium point of Eq.(1.1).

1. The equilibrium point 𝑥∗ of Eq.(1.1), is called locally stable if for 𝜖 > 0, there exist 𝛿 > 0 such

that for all {𝑥𝑛}∞𝑛=−𝑘 is a solution of Eq.(1.1), and
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|𝑥−𝑘 − 𝑥∗ | + |𝑥−𝑘+1 − 𝑥∗ | + ... + |𝑥0 − 𝑥∗ | < 𝛿,

then

|𝑥𝑛 − 𝑥∗ | < 𝜖 for all 𝑛 ≥ 0.

2. The equilibrium point 𝑥∗ of Eq.(1.1), is called locally asymptotically stable if it is locally stable,

and if there exists 𝛾 > 0 such that if {𝑥𝑛}∞𝑛=−𝑘 is a solution of Eq.(1.1), and

|𝑥−𝑘 − 𝑥∗ | + |𝑥−𝑘+1 − 𝑥∗ | + ... + |𝑥0 − 𝑥∗ | < 𝛾,

then

lim
𝑛→∞

= 𝑥∗.

3. The equilibrium point 𝑥∗ of Eq.(1.1) is called global attractor if for every solution {𝑥𝑛}∞𝑛=−𝑘 of

Eq.(1.1), we have lim𝑛→∞ = 𝑥∗.

4. The equilibrium point 𝑥∗ of Eq.(1.1), is called globally asymptotically stable if it is locally

stable and global attractor of Eq.(1.1).

5. The equilibrium point 𝑥∗ of Eq.(1.1), is called unstable if 𝑥∗ is not locally stable.

2 Linearized Stability Analysis

Definition 4. The linearized equation of Eq.(1.1), about the equilibrium point 𝑥∗ is the linear

difference equation

𝑦𝑛+1 =
𝑘∑︁
𝑗=0

𝜕𝐹 (𝑥∗, 𝑥∗, ..., 𝑥∗)
𝜕𝑥𝑛− 𝑗

𝑦𝑛− 𝑗 . (2.1)

The characteristic equation associated with Eq.(2.1) is

𝑝(𝜆) = 𝑝0𝜆
𝑘 + 𝑝1𝜆

𝑘−1 + .... + 𝑝𝑘−1𝜆 + 𝑝𝑘 = 0,

where

𝑝 𝑗 =
𝜕𝐹 (𝑥∗, 𝑥∗, ..., 𝑥∗)

𝜕𝑥𝑛− 𝑗

.

Theorem 1. [34]
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Assume that 𝑝, 𝑞 ∈ 𝑅 and 𝑘 ∈ {0, 1, 2, ...}. Then

|𝑝 | + |𝑞 | < 1,

is a sufficient condition for asymptotic stability of the difference equations

𝑥𝑛+1 + 𝑝𝑥𝑛 + 𝑞𝑥𝑛−𝑘 = 0, 𝑛 = 1, 2, ... .

Remark 1. The previous theorem can be extended to a general linear equation of the form

𝑥𝑛−𝑘 + 𝑝1𝑥𝑛+𝑘−1 + ... + 𝑝𝑘𝑥𝑛 = 0, 𝑛 = 0, 1, 2, ..., (2.2)

where 𝑝1, 𝑝2,..., 𝑝𝑘 ∈ 𝑅 and 𝑘 ∈ {0, 1, 2, ...}, Then Eq.(2.2) is asymptotically stable if

𝑘∑︁
𝑖=1

|𝑝𝑖 | < 1.

3 Qualitative Behavior of Solutions of 𝑧𝑛+1 = 𝑧𝑛−4𝑧𝑛−5
𝑧𝑛(1+𝑧𝑛−4𝑧𝑛−5)

In this section, we study some properties of the following recursive equation in the form

𝑧𝑛+1=
𝑧𝑛−4𝑧𝑛−5

𝑧𝑛 (1 + 𝑧𝑛−4𝑧𝑛−5)
, (3.1)

where the initial conditions 𝑧−5, 𝑧−4, 𝑧−3, 𝑧−2, 𝑧−1 and 𝑧0 are arbitrary non-zero real numbers.

Theorem 2. Let {𝑧𝑛}∞𝑛=−5 be a solution of difference equation (3.1). Then for 𝑛 = 0, 1, ...,

𝑧10𝑛−5 = 𝑓

𝑛−1∏
𝑗=0

( [2 𝑗𝑎𝑏 + 1] [2 𝑗𝑐𝑑 + 1] [2 𝑗 𝑒 𝑓 + 1] [(2 𝑗 + 1)𝑏𝑐 + 1] [(2 𝑗 + 1)𝑑𝑒 + 1]
[(2 𝑗 + 1)𝑎𝑏 + 1] [(2 𝑗 + 1)𝑐𝑑 + 1] [(2 𝑗 + 1)𝑒 𝑓 + 1] [2 𝑗 𝑏𝑐 + 1] [2 𝑗 𝑑𝑒 + 1] ,

𝑧10𝑛−4 = 𝑒

𝑛−1∏
𝑗=0

[(2 𝑗 + 1)𝑎𝑏 + 1] [(2 𝑗 + 1)𝑐𝑑 + 1] [(2 𝑗 + 1)𝑒 𝑓 + 1] [2 𝑗 𝑏𝑐 + 1] [2 𝑗 𝑑𝑒 + 1])
[2 𝑗𝑎𝑏 + 1] [2 𝑗𝑐𝑑 + 1] [2( 𝑗 + 1)𝑒 𝑓 + 1] [(2 𝑗 + 1)𝑏𝑐 + 1] [(2 𝑗 + 1)𝑑𝑒 + 1] ,

𝑧10𝑛−3 = 𝑑

𝑛−1∏
𝑗=0

[2 𝑗𝑎𝑏 + 1] [2 𝑗𝑐𝑑 + 1] [2( 𝑗 + 1)𝑒 𝑓 + 1] [(2 𝑗 + 1)𝑏𝑐 + 1] [(2 𝑗 + 1)𝑑𝑒 + 1]
[(2 𝑗 + 1)𝑎𝑏 + 1] [(2 𝑗 + 1)𝑐𝑑 + 1] [(2 𝑗 + 1)𝑒 𝑓 + 1] [2 𝑗 𝑏𝑐 + 1] [2( 𝑗 + 1)𝑑𝑒 + 1] ,

𝑧10𝑛−2 = 𝑐

𝑛−1∏
𝑗=0

[(2 𝑗 + 1)𝑎𝑏 + 1] [(2 𝑗 + 1)𝑐𝑑 + 1] [(2 𝑗 + 1)𝑒 𝑓 + 1] [2 𝑗 𝑏𝑐 + 1] [2( 𝑗 + 1)𝑑𝑒 + 1]
[2 𝑗𝑎𝑏 + 1] [2( 𝑗 + 1)𝑐𝑑 + 1] [2( 𝑗 + 1)𝑒 𝑓 + 1] [(2 𝑗 + 1)𝑏𝑐 + 1] [(2 𝑗 + 1)𝑑𝑒 + 1] ,
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𝑧10𝑛−1 = 𝑏

𝑛−1∏
𝑗=0

[2 𝑗𝑎𝑏 + 1] [2( 𝑗 + 1)𝑐𝑑 + 1] [2( 𝑗 + 1)𝑒 𝑓 + 1] [(2 𝑗 + 1)𝑏𝑐 + 1] [(2 𝑗 + 1)𝑑𝑒 + 1]
[(2 𝑗 + 1)𝑎𝑏 + 1] [(2 𝑗 + 1)𝑐𝑑 + 1] [(2 𝑗 + 1)𝑒 𝑓 + 1] [2( 𝑗 + 1)𝑏𝑐 + 1] [2( 𝑗 + 1)𝑑𝑒 + 1] ,

𝑧10𝑛 = 𝑎

𝑛−1∏
𝑗=0

[(2 𝑗 + 1)𝑎𝑏 + 1] [(2 𝑗 + 1)𝑐𝑑 + 1] [(2 𝑗 + 1)𝑒 𝑓 + 1] [2( 𝑗 + 1)𝑏𝑐 + 1] [2( 𝑗 + 1)𝑑𝑒 + 1]
[2( 𝑗 + 1)𝑎𝑏 + 1] [2( 𝑗 + 1)𝑐𝑑 + 1] [2( 𝑗 + 1)𝑒 𝑓 + 1] [(2 𝑗 + 1)𝑏𝑐 + 1] [(2 𝑗 + 1)𝑑𝑒 + 1] ,

𝑧10𝑛+1 =
𝑒 𝑓

𝑎(𝑒 𝑓 + 1)

𝑛−1∏
𝑗=0

[2( 𝑗 + 1)𝑎𝑏 + 1] [2( 𝑗 + 1)𝑐𝑑 + 1] [2( 𝑗 + 1)𝑒 𝑓 + 1] [(2 𝑗 + 1)𝑏𝑐 + 1]
[(2 𝑗 + 1)𝑎𝑏 + 1] [(2 𝑗 + 1)𝑐𝑑 + 1] [(2 𝑗 + 3)𝑒 𝑓 + 1] [2( 𝑗 + 1)𝑏𝑐 + 1]

× [(2 𝑗 + 1)𝑑𝑒 + 1]
[[2( 𝑗 + 1)𝑑𝑒 + 1] ,

𝑧10𝑛+2 =
𝑑𝑎(𝑒 𝑓 + 1)
𝑓 (𝑑𝑒 + 1)

𝑛−1∏
𝑗=0

[(2 𝑗 + 1)𝑎𝑏 + 1] [(2 𝑗 + 1)𝑐𝑑 + 1] [(2 𝑗 + 3)𝑒 𝑓 + 1] [2( 𝑗 + 1)𝑏𝑐 + 1]
[2( 𝑗 + 1)𝑎𝑏 + 1] [2( 𝑗 + 1)𝑐𝑑 + 1] [2( 𝑗 + 1)𝑒 𝑓 + 1] [(2 𝑗 + 1)𝑏𝑐 + 1]

× [2( 𝑗 + 1)𝑑𝑒 + 1]
[(2 𝑗 + 3)𝑑𝑒 + 1] ,

𝑧10𝑛+3 =
𝑐 𝑓 (𝑑𝑒 + 1)

𝑎(𝑒 𝑓 + 1) (𝑐𝑑 + 1)

𝑛−1∏
𝑗=0

[2( 𝑗 + 1)𝑎𝑏 + 1] [2( 𝑗 + 1)𝑐𝑑 + 1] [2( 𝑗 + 1)𝑒 𝑓 + 1]
[(2 𝑗 + 1)𝑎𝑏 + 1] [(2 𝑗 + 3)𝑐𝑑 + 1] [(2 𝑗 + 3)𝑒 𝑓 + 1]

× [(2 𝑗 + 1)𝑏𝑐 + 1] [(2 𝑗 + 3)𝑑𝑒 + 1]
[2( 𝑗 + 1)𝑏𝑐 + 1] [2( 𝑗 + 1)𝑑𝑒 + 1] ,

𝑧10𝑛+4 =
𝑏𝑎(𝑒 𝑓 + 1) (𝑐𝑑 + 1)
𝑓 (𝑑𝑒 + 1) (𝑏𝑐 + 1)

𝑛−1∏
𝑗=0

[(2 𝑗 + 1)𝑎𝑏 + 1] [(2 𝑗 + 3)𝑐𝑑 + 1] [(2 𝑗 + 3)𝑒 𝑓 + 1]
[2( 𝑗 + 1)𝑎𝑏 + 1] [2( 𝑗 + 1)𝑐𝑑 + 1] [2( 𝑗 + 1)𝑒 𝑓 + 1]

× [2( 𝑗 + 1)𝑏𝑐 + 1] [2( 𝑗 + 1)𝑑𝑒 + 1]
[(2 𝑗 + 3)𝑏𝑐 + 1] [(2 𝑗 + 3)𝑑𝑒 + 1] ,

where 𝑧−5 = 𝑓 , 𝑧−4 = 𝑒, 𝑧−3 = 𝑑, 𝑧−2 = 𝑐, 𝑧−1 = 𝑏, 𝑧0 = 𝑎.

Proof. For 𝑛 = 0, the result holds. Now, assume that 𝑛 > 0 and that our assumption holds for 𝑛−1.

That is

𝑧10𝑛−15 = 𝑓

𝑛−2∏
𝑗=0

( [2 𝑗𝑎𝑏 + 1] [2 𝑗𝑐𝑑 + 1] [2 𝑗 𝑒 𝑓 + 1] [(2 𝑗 + 1)𝑏𝑐 + 1] [(2 𝑗 + 1)𝑑𝑒 + 1]
[(2 𝑗 + 1)𝑎𝑏 + 1] [(2 𝑗 + 1)𝑐𝑑 + 1] [(2 𝑗 + 1)𝑒 𝑓 + 1] [2 𝑗 𝑏𝑐 + 1] [2 𝑗 𝑑𝑒 + 1] ,
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𝑧10𝑛−14 = 𝑒

𝑛−2∏
𝑗=0

[(2 𝑗 + 1)𝑎𝑏 + 1] [(2 𝑗 + 1)𝑐𝑑 + 1] [(2 𝑗 + 1)𝑒 𝑓 + 1] [2 𝑗 𝑏𝑐 + 1] [2 𝑗 𝑑𝑒 + 1])
[2 𝑗𝑎𝑏 + 1] [2 𝑗𝑐𝑑 + 1] [2( 𝑗 + 1)𝑒 𝑓 + 1] [(2 𝑗 + 1)𝑏𝑐 + 1] [(2 𝑗 + 1)𝑑𝑒 + 1] ,

𝑧10𝑛−13 = 𝑑

𝑛−2∏
𝑗=0

[2 𝑗𝑎𝑏 + 1] [2 𝑗𝑐𝑑 + 1] [2( 𝑗 + 1)𝑒 𝑓 + 1] [(2 𝑗 + 1)𝑏𝑐 + 1] [(2 𝑗 + 1)𝑑𝑒 + 1]
[(2 𝑗 + 1)𝑎𝑏 + 1] [(2 𝑗 + 1)𝑐𝑑 + 1] [(2 𝑗 + 1)𝑒 𝑓 + 1] [2 𝑗 𝑏𝑐 + 1] [2( 𝑗 + 1)𝑑𝑒 + 1] ,

𝑧10𝑛−12 = 𝑐

𝑛−2∏
𝑗=0

[(2 𝑗 + 1)𝑎𝑏 + 1] [(2 𝑗 + 1)𝑐𝑑 + 1] [(2 𝑗 + 1)𝑒 𝑓 + 1] [2 𝑗 𝑏𝑐 + 1] [2( 𝑗 + 1)𝑑𝑒 + 1]
[2 𝑗𝑎𝑏 + 1] [2( 𝑗 + 1)𝑐𝑑 + 1] [2( 𝑗 + 1)𝑒 𝑓 + 1] [(2 𝑗 + 1)𝑏𝑐 + 1] [(2 𝑗 + 1)𝑑𝑒 + 1] ,

𝑧10𝑛−11 = 𝑏

𝑛−2∏
𝑗=0

[2 𝑗𝑎𝑏 + 1] [2( 𝑗 + 1)𝑐𝑑 + 1] [2( 𝑗 + 1)𝑒 𝑓 + 1] [(2 𝑗 + 1)𝑏𝑐 + 1] [(2 𝑗 + 1)𝑑𝑒 + 1]
[(2 𝑗 + 1)𝑎𝑏 + 1] [(2 𝑗 + 1)𝑐𝑑 + 1] [(2 𝑗 + 1)𝑒 𝑓 + 1] [2( 𝑗 + 1)𝑏𝑐 + 1] [2( 𝑗 + 1)𝑑𝑒 + 1] ,

𝑧10𝑛−10 = 𝑎

𝑛−2∏
𝑗=0

[(2 𝑗 + 1)𝑎𝑏 + 1] [(2 𝑗 + 1)𝑐𝑑 + 1] [(2 𝑗 + 1)𝑒 𝑓 + 1] [2( 𝑗 + 1)𝑏𝑐 + 1] [2( 𝑗 + 1)𝑑𝑒 + 1]
[2( 𝑗 + 1)𝑎𝑏 + 1] [2( 𝑗 + 1)𝑐𝑑 + 1] [2( 𝑗 + 1)𝑒 𝑓 + 1] [(2 𝑗 + 1)𝑏𝑐 + 1] [(2 𝑗 + 1)𝑑𝑒 + 1] ,

𝑧10𝑛−9 =
𝑒 𝑓

𝑎(𝑒 𝑓 + 1)

𝑛−2∏
𝑗=0

[2( 𝑗 + 1)𝑎𝑏 + 1] [2( 𝑗 + 1)𝑐𝑑 + 1] [2( 𝑗 + 1)𝑒 𝑓 + 1] [(2 𝑗 + 1)𝑏𝑐 + 1]
[(2 𝑗 + 1)𝑎𝑏 + 1] [(2 𝑗 + 1)𝑐𝑑 + 1] [(2 𝑗 + 3)𝑒 𝑓 + 1] [2( 𝑗 + 1)𝑏𝑐 + 1]

× [(2 𝑗 + 1)𝑑𝑒 + 1]
[[2( 𝑗 + 1)𝑑𝑒 + 1] ,

𝑧10𝑛−8 =
𝑑𝑎(𝑒 𝑓 + 1)
𝑓 (𝑑𝑒 + 1)

𝑛−2∏
𝑗=0

[(2 𝑗 + 1)𝑎𝑏 + 1] [(2 𝑗 + 1)𝑐𝑑 + 1] [(2 𝑗 + 3)𝑒 𝑓 + 1] [2( 𝑗 + 1)𝑏𝑐 + 1]
[2( 𝑗 + 1)𝑎𝑏 + 1] [2( 𝑗 + 1)𝑐𝑑 + 1] [2( 𝑗 + 1)𝑒 𝑓 + 1] [(2 𝑗 + 1)𝑏𝑐 + 1]

× [2( 𝑗 + 1)𝑑𝑒 + 1]
[(2 𝑗 + 3)𝑑𝑒 + 1] ,

𝑧10𝑛−7 =
𝑐 𝑓 (𝑑𝑒 + 1)

𝑎(𝑒 𝑓 + 1) (𝑐𝑑 + 1)

𝑛−2∏
𝑗=0

[2( 𝑗 + 1)𝑎𝑏 + 1] [2( 𝑗 + 1)𝑐𝑑 + 1] [2( 𝑗 + 1)𝑒 𝑓 + 1]
[(2 𝑗 + 1)𝑎𝑏 + 1] [(2 𝑗 + 3)𝑐𝑑 + 1] [(2 𝑗 + 3)𝑒 𝑓 + 1]

× [(2 𝑗 + 1)𝑏𝑐 + 1] [(2 𝑗 + 3)𝑑𝑒 + 1]
[2( 𝑗 + 1)𝑏𝑐 + 1] [2( 𝑗 + 1)𝑑𝑒 + 1] ,

𝑧10𝑛−6 =
𝑏𝑎(𝑒 𝑓 + 1) (𝑐𝑑 + 1)
𝑓 (𝑑𝑒 + 1) (𝑏𝑐 + 1)

𝑛−2∏
𝑗=0

[(2 𝑗 + 1)𝑎𝑏 + 1] [(2 𝑗 + 3)𝑐𝑑 + 1] [(2 𝑗 + 3)𝑒 𝑓 + 1]
[2( 𝑗 + 1)𝑎𝑏 + 1] [2( 𝑗 + 1)𝑐𝑑 + 1] [2( 𝑗 + 1)𝑒 𝑓 + 1]

× [2( 𝑗 + 1)𝑏𝑐 + 1] [2( 𝑗 + 1)𝑑𝑒 + 1]
[(2 𝑗 + 3)𝑏𝑐 + 1] [(2 𝑗 + 3)𝑑𝑒 + 1] ,

from Eq. (3.1), we see that
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𝑧10𝑛−5 =
𝑧10𝑛−10𝑧10𝑛−11

𝑧10𝑛−6(1 + 𝑧10𝑛−10𝑧10𝑛−11)

= 𝑎𝑏

𝑛−2∏
𝑗=0

[2 𝑗𝑎𝑏 + 1]
[2( 𝑗 + 1)𝑎𝑏 + 1]

× 1

𝑏𝑎(𝑒 𝑓 +1) (𝑐𝑑+1)
𝑓 (𝑑𝑒+1) (𝑏𝑐+1)

𝑛−2∏
𝑗=0

[(2 𝑗+1)𝑎𝑏+1] [(2 𝑗+3)𝑐𝑑+1] [(2 𝑗+3)𝑒 𝑓 +1] [2( 𝑗+1)𝑏𝑐+1] [2( 𝑗+1)𝑑𝑒+1]
[2( 𝑗+1)𝑎𝑏+1] [2( 𝑗+1)𝑐𝑑+1] [2( 𝑗+1)𝑒 𝑓 +1] [(2 𝑗+3)𝑏𝑐+1] [(2 𝑗+3)𝑑𝑒+1]

× 1

(1 + 𝑎𝑏

𝑛−2∏
𝑗=0

[2 𝑗𝑎𝑏+1]
[2( 𝑗+1)𝑎𝑏+1] )

=
𝑎𝑏[2𝑎𝑏 + 1] [4𝑎𝑏 + 1] . . . . [(2𝑛 − 6)𝑎𝑏 + 1] [(2𝑛 − 4)𝑎𝑏 + 1]
[2𝑎𝑏 + 1] [4𝑎𝑏 + 1] . . . [(2𝑛 − 4)𝑎𝑏 + 1] [(2𝑛 − 2)𝑎𝑏 + 1]

× 1

𝑏𝑎(𝑒 𝑓 +1) (𝑐𝑑+1)
𝑓 (𝑑𝑒+1) (𝑏𝑐+1)

𝑛−2∏
𝑗=0

[(2 𝑗+1)𝑎𝑏+1] [(2 𝑗+3)𝑐𝑑+1] [(2 𝑗+3)𝑒 𝑓 +1] [2( 𝑗+1)𝑏𝑐+1] [2( 𝑗+1)𝑑𝑒+1]
[2( 𝑗+1)𝑎𝑏+1] [2( 𝑗+1)𝑐𝑑+1] [2( 𝑗+1)𝑒 𝑓 +1] [(2 𝑗+3)𝑏𝑐+1] [(2 𝑗+3)𝑑𝑒+1]

× 1

(1 + 𝑎𝑏

𝑛−2∏
𝑗=0

[2 𝑗𝑎𝑏+1]
[2( 𝑗+1)𝑎𝑏+1] )

=
𝑎𝑏

[(2𝑛 − 2)𝑎𝑏 + 1]

× 1

𝑏𝑎(𝑒 𝑓 +1) (𝑐𝑑+1)
𝑓 (𝑑𝑒+1) (𝑏𝑐+1)

𝑛−2∏
𝑗=0

[(2 𝑗+1)𝑎𝑏+1] [(2 𝑗+3)𝑐𝑑+1] [(2 𝑗+3)𝑒 𝑓 +1] [2( 𝑗+1)𝑏𝑐+1] [2( 𝑗+1)𝑑𝑒+1]
[2( 𝑗+1)𝑎𝑏+1] [2( 𝑗+1)𝑐𝑑+1] [2( 𝑗+1)𝑒 𝑓 +1] [(2 𝑗+3)𝑏𝑐+1] [(2 𝑗+3)𝑑𝑒+1]

× 1
( [(2𝑛−1)𝑎𝑏+1][(2𝑛−2)𝑎𝑏+1]

=
𝑓 (𝑑𝑒 + 1) (𝑏𝑐 + 1)
(𝑒 𝑓 + 1) (𝑐𝑑 + 1) ×

×
𝑛−2∏
𝑗=0

[2( 𝑗 + 1)𝑎𝑏 + 1] [2( 𝑗 + 1)𝑐𝑑 + 1] [2( 𝑗 + 1)𝑒 𝑓 + 1] [(2 𝑗 + 3)𝑏𝑐 + 1]
[(2 𝑗 + 1)𝑎𝑏 + 1] [(2 𝑗 + 3)𝑐𝑑 + 1] [(2 𝑗 + 3)𝑒 𝑓 + 1] [2( 𝑗 + 1)𝑏𝑐 + 1]

× [(2 𝑗 + 3)𝑑𝑒 + 1]
[2( 𝑗 + 1)𝑑𝑒 + 1] [(2𝑛 − 1)𝑎𝑏 + 1]
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= 𝑓

𝑛−1∏
𝑗=0

[(2 𝑗 + 1)𝑏𝑐 + 1] [(2 𝑗 + 1)𝑑𝑒 + 1] [2 𝑗𝑎𝑏 + 1] [2 𝑗𝑐𝑑 + 1] [2 𝑗 𝑒 𝑓 + 1]
[(2 𝑗 + 1)𝑐𝑑 + 1] [(2 𝑗 + 1)𝑒 𝑓 + 1] [2 𝑗 𝑏𝑐 + 1] [2 𝑗 𝑑𝑒 + 1]

×
𝑛−2∏
𝑗=0

1
[(2 𝑗 + 1)𝑎𝑏 + 1] [(2𝑛 − 1)𝑎𝑏 + 1] .

= 𝑓

𝑛−1∏
𝑗=0

(2 𝑗 + 1)𝑏𝑐 + 1] [(2 𝑗 + 1)𝑑𝑒 + 1] [2 𝑗𝑎𝑏 + 1] [2 𝑗𝑐𝑑 + 1] [2 𝑗 𝑒 𝑓 + 1]
[(2 𝑗 + 1)𝑐𝑑 + 1] [(2 𝑗 + 1)𝑒 𝑓 + 1] [2 𝑗 𝑏𝑐 + 1] [2 𝑗 𝑑𝑒 + 1] [(2 𝑗 + 1)𝑎𝑏 + 1] .

Consequently, we have

𝑧10𝑛−5 = 𝑓

𝑛−1∏
𝑗=0

[(2 𝑗 + 1)𝑏𝑐 + 1] [(2 𝑗 + 1)𝑑𝑒 + 1] [2 𝑗𝑎𝑏 + 1] [2 𝑗𝑐𝑑 + 1] [2 𝑗 𝑒 𝑓 + 1]
[(2 𝑗 + 1)𝑐𝑑 + 1] [(2 𝑗 + 1)𝑒 𝑓 + 1] [2 𝑗 𝑏𝑐 + 1] [2 𝑗 𝑑𝑒 + 1] [(2 𝑗 + 1)𝑎𝑏 + 1] .

Similarly, the other relations can be proved. The proof is completed. �

Theorem 3. The equilibrium point of Eq.(3.1) is 0 and it is not locally asymptotically stable.

Proof. For the equilibrium points of Eq.(3.1), we can write

𝑧∗ =
𝑧∗
2

𝑧∗(1 + 𝑧∗2)
,

then

1 + 𝑧∗
2
= 1,

thus,

𝑧∗
2
= 0.

Then 𝑧∗ = 0 is the unique equilibrium point.

Define the function 𝐹 by

𝐹 (𝑥, 𝑦, 𝑤) = 𝑦𝑤

𝑥(1 + 𝑦𝑤) .

Then it follows that

𝐹𝑥 (𝑥, 𝑦, 𝑤) =
−𝑦𝑤

𝑥2(1 + 𝑦𝑤)
, 𝐹𝑦 (𝑥, 𝑦, 𝑤) =

𝑤

𝑥(1 + 𝑦𝑤)2
,

𝐹𝑤 (𝑥, 𝑦, 𝑤) =
𝑦

𝑥(1 + 𝑦𝑤)2
,
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Figure 1:

we see that,

𝐹𝑥 (𝑧∗, 𝑧∗, 𝑧∗) = −1, 𝐹𝑦 (𝑧∗, 𝑧∗, 𝑧∗) = 1, 𝐹𝑤 (𝑧∗, 𝑧∗, 𝑧∗) = 1.

By using Theorem 1 , the proof is completed. �

Numerical Example:

Now, To illustrate different types of solution of Eq.(3.1), we present numerical example.

Example 1. Put 𝑧−5 = 2, 𝑧−4 = 12, 𝑧−3 = 4, 𝑧−2 = −3, 𝑧−1 = 1.5, 𝑧0 = 6 in Eq.(3.1) see Figure 1.

4 Qualitative Behavior of Solutions of 𝑧𝑛+1 = 𝑧𝑛−4𝑧𝑛−5
𝑧𝑛(−1+𝑧𝑛−4𝑧𝑛−5)

In this part, we introduce the solutions of the following difference equation

𝑧𝑛+1=
𝑧𝑛−4𝑧𝑛−5

𝑧𝑛 (−1 + 𝑧𝑛−4𝑧𝑛−5)
, 𝑛 = 0, 1, 2, ..., (4.1)

where the initial conditions 𝑧−5, 𝑧−4, 𝑧−3, 𝑧−2, 𝑧−1 and 𝑧0 are arbitrary non-zero real numbers with

𝑧−1𝑧0, 𝑧−2𝑧−1, 𝑧−3𝑧−2, 𝑧−3𝑧−4, 𝑧−5𝑧−4 ≠ 1.
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Theorem 4. Let {𝑧𝑛}∞𝑛=−5 be a solution of difference equation (4.1). Then Eq.(4.1) has the following

solutions for 𝑛 = 0, 1, ...

𝑧10𝑛−5 =
𝑓 (𝑑𝑒 − 1)𝑛 (𝑏𝑐 − 1)𝑛

(𝑒 𝑓 − 1)𝑛 (𝑐𝑑 − 1)𝑛 (𝑎𝑏 − 1)𝑛 , 𝑧10𝑛−4 =
𝑒(𝑒 𝑓 − 1)𝑛 (𝑐𝑑 − 1)𝑛 (𝑎𝑏 − 1)𝑛

(𝑑𝑒 − 1)𝑛 (𝑏𝑐 − 1)𝑛 ,

𝑧10𝑛−3 =
𝑑 (𝑑𝑒 − 1)𝑛 (𝑏𝑐 − 1)𝑛

(𝑒 𝑓 − 1)𝑛 (𝑐𝑑 − 1)𝑛 (𝑎𝑏 − 1)𝑛 , 𝑧10𝑛−2 =
𝑐(𝑒 𝑓 − 1)𝑛 (𝑐𝑑 − 1)𝑛 (𝑎𝑏 − 1)𝑛

(𝑑𝑒 − 1)𝑛 (𝑏𝑐 − 1)𝑛 ,

𝑧10𝑛−1 =
𝑏(𝑑𝑒 − 1)𝑛 (𝑏𝑐 − 1)𝑛

(𝑒 𝑓 − 1)𝑛 (𝑐𝑑 − 1)𝑛 (𝑎𝑏 − 1)𝑛 , 𝑧10𝑛 =
𝑎(𝑒 𝑓 − 1)𝑛 (𝑐𝑑 − 1)𝑛 (𝑎𝑏 − 1)𝑛

(𝑑𝑒 − 1)𝑛 (𝑏𝑐 − 1)𝑛 ,

𝑧10𝑛+1 =
𝑒 𝑓 (𝑑𝑒 − 1)𝑛 (𝑏𝑐 − 1)𝑛

𝑎(𝑒 𝑓 − 1)𝑛+1(𝑐𝑑 − 1)𝑛 (𝑎𝑏 − 1)𝑛
, 𝑧10𝑛+2 =

𝑑𝑎(𝑒 𝑓 − 1)𝑛+1(𝑐𝑑 − 1)𝑛 (𝑎𝑏 − 1)𝑛
𝑓 (𝑑𝑒 − 1)𝑛+1(𝑏𝑐 − 1)𝑛

,

𝑧10𝑛+3 =
𝑐 𝑓 (𝑑𝑒 − 1)𝑛+1(𝑏𝑐 − 1)𝑛

𝑎(𝑒 𝑓 − 1)𝑛+1(𝑐𝑑 − 1)𝑛+1(𝑎𝑏 − 1)𝑛
, 𝑧10𝑛+4 =

𝑏𝑎(𝑒 𝑓 − 1)𝑛+1(𝑐𝑑 − 1)𝑛+1(𝑎𝑏 − 1)𝑛
𝑓 (𝑑𝑒 − 1)𝑛+1(𝑏𝑐 − 1)𝑛+1

,

where 𝑧−5 = 𝑓 , 𝑧−4 = 𝑒, 𝑧−3 = 𝑑, 𝑧−2 = 𝑐, 𝑧−1 = 𝑏, 𝑧0 = 𝑎.

Proof. For 𝑛 = 0, the result holds. Now, assume that 𝑛 > 0 and that our assumption holds for 𝑛−1.

That is

𝑧10𝑛−15 =
𝑓 (𝑑𝑒 − 1)𝑛−1(𝑏𝑐 − 1)𝑛−1

(𝑒 𝑓 − 1)𝑛−1(𝑐𝑑 − 1)𝑛−1(𝑎𝑏 − 1)𝑛−1
, 𝑧10𝑛−14 =

𝑒(𝑒 𝑓 − 1)𝑛−1(𝑐𝑑 − 1)𝑛−1(𝑎𝑏 − 1)𝑛−1
(𝑑𝑒 − 1)𝑛−1(𝑏𝑐 − 1)𝑛−1

,

𝑧10𝑛−13 =
𝑑 (𝑑𝑒 − 1)𝑛−1(𝑏𝑐 − 1)𝑛−1

(𝑒 𝑓 − 1)𝑛−1(𝑐𝑑 − 1)𝑛−1(𝑎𝑏 − 1)𝑛−1
, 𝑧10𝑛−12 =

𝑐(𝑒 𝑓 − 1)𝑛−1(𝑐𝑑 − 1)𝑛−1(𝑎𝑏 − 1)𝑛−1
(𝑑𝑒 − 1)𝑛−1(𝑏𝑐 − 1)𝑛−1

,

𝑧10𝑛−11 =
𝑏(𝑑𝑒 − 1)𝑛−1(𝑏𝑐 − 1)𝑛−1

(𝑒 𝑓 − 1)𝑛−1(𝑐𝑑 − 1)𝑛−1(𝑎𝑏 − 1)𝑛−1
, 𝑧10𝑛−10 =

𝑎(𝑒 𝑓 − 1)𝑛−1(𝑐𝑑 − 1)𝑛−1(𝑎𝑏 − 1)𝑛−1
(𝑑𝑒 − 1)𝑛−1(𝑏𝑐 − 1)𝑛−1

,

𝑧10𝑛−9 =
𝑒 𝑓 (𝑑𝑒 − 1)𝑛−1(𝑏𝑐 − 1)𝑛−1

𝑎(𝑒 𝑓 − 1)𝑛 (𝑐𝑑 − 1)𝑛−1(𝑎𝑏 − 1)𝑛−1
, 𝑧10𝑛−8 =

𝑑𝑎(𝑒 𝑓 − 1)𝑛 (𝑐𝑑 − 1)𝑛−1(𝑎𝑏 − 1)𝑛−1
𝑓 (𝑑𝑒 − 1)𝑛 (𝑏𝑐 − 1)𝑛−1

,

Page 11

https://www.lynnp.org


Pure and Applicable Analysis 2023, 2023: 3 https://www.lynnp.org

𝑧10𝑛−7 =
𝑐 𝑓 (𝑑𝑒 − 1)𝑛 (𝑏𝑐 − 1)𝑛−1

𝑎(𝑒 𝑓 − 1)𝑛 (𝑐𝑑 − 1)𝑛 (𝑎𝑏 − 1)𝑛−1
, 𝑧10𝑛−6 =

𝑏𝑎(𝑒 𝑓 − 1)𝑛 (𝑐𝑑 − 1)𝑛 (𝑎𝑏 − 1)𝑛−1
𝑓 (𝑑𝑒 − 1)𝑛 (𝑏𝑐 − 1)𝑛 .

From Eq.(4.1) that

𝑧10𝑛−5 =
𝑧10𝑛−10𝑧10𝑛−11

𝑧10𝑛−6(−1 + 𝑧10𝑛−10𝑧10𝑛−11)

=
𝑎𝑏

𝑏𝑎(𝑒 𝑓−1)𝑛 (𝑐𝑑−1)𝑛 (𝑎𝑏−1)𝑛−1
𝑓 (𝑑𝑒−1)𝑛 (𝑏𝑐−1)𝑛 (−1 + 𝑎𝑏)

=
𝑓 (𝑑𝑒 − 1)𝑛 (𝑏𝑐 − 1)𝑛

(𝑒 𝑓 − 1)𝑛 (𝑐𝑑 − 1)𝑛 (𝑎𝑏 − 1)𝑛 .

𝑧10𝑛−4 =
𝑧10𝑛−9𝑧10𝑛−10

𝑧10𝑛−5(−1 + 𝑧10𝑛−9𝑧10𝑛−10)

=

𝑒 𝑓

(−1+𝑒 𝑓 )
𝑓 (𝑑𝑒−1)𝑛 (𝑏𝑐−1)𝑛

(𝑒 𝑓−1)𝑛 (𝑐𝑑−1)𝑛 (𝑎𝑏−1)𝑛 (−1 +
𝑒 𝑓

(−1+𝑒 𝑓 ) )

=
𝑒(𝑒 𝑓 − 1)𝑛 (𝑐𝑑 − 1)𝑛 (𝑎𝑏 − 1)𝑛

(𝑑𝑒 − 1)𝑛 (𝑏𝑐 − 1)𝑛 .

Similarly, we can proved other relations. �

Theorem 5. The difference equation (4.1) has a periodic solution of periodic ten iff 𝑐𝑑 = 2 , 𝑎 = 𝑐

and 𝑑 = 𝑓 and we wilt get the form

{ 𝑓 , 𝑒, 𝑑, 𝑐, 𝑏, 𝑎, 𝑒 𝑓

𝑎(𝑒 𝑓 − 1) ,
𝑑𝑎

𝑓
,
𝑐 𝑓

𝑎
,

𝑏𝑎

𝑓 (𝑏𝑎 − 1) , 𝑓 , 𝑒, 𝑑, 𝑐, ...}.

Proof. Assume that there exists a prime period ten solution of Eq.(4.1)

{ 𝑓 , 𝑒, 𝑑, 𝑐, 𝑏, 𝑎, 𝑒 𝑓

𝑎(𝑒 𝑓 − 1) ,
𝑑𝑎

𝑓
,
𝑐 𝑓

𝑎
,

𝑏𝑎

𝑓 (𝑏𝑎 − 1) , ...},

from the solutions form of Eq.(4.1), we get

𝑧10𝑛−5 =
𝑓 (𝑑𝑒 − 1)𝑛 (𝑏𝑐 − 1)𝑛

(𝑒 𝑓 − 1)𝑛 (𝑐𝑑 − 1)𝑛 (𝑎𝑏 − 1)𝑛 = 𝑓 ,

𝑧10𝑛−4 =
𝑒(𝑒 𝑓 − 1)𝑛 (𝑐𝑑 − 1)𝑛 (𝑎𝑏 − 1)𝑛

(𝑑𝑒 − 1)𝑛 (𝑏𝑐 − 1)𝑛 = 𝑒,

Page 12

https://www.lynnp.org


Pure and Applicable Analysis 2023, 2023: 3 https://www.lynnp.org

𝑧10𝑛−3 =
𝑑 (𝑑𝑒 − 1)𝑛 (𝑏𝑐 − 1)𝑛

(𝑒 𝑓 − 1)𝑛 (𝑐𝑑 − 1)𝑛 (𝑎𝑏 − 1)𝑛 = 𝑑,

𝑧10𝑛−2 =
𝑐(𝑒 𝑓 − 1)𝑛 (𝑐𝑑 − 1)𝑛 (𝑎𝑏 − 1)𝑛

(𝑑𝑒 − 1)𝑛 (𝑏𝑐 − 1)𝑛 = 𝑐,

𝑧10𝑛−1 =
𝑏(𝑑𝑒 − 1)𝑛 (𝑏𝑐 − 1)𝑛

(𝑒 𝑓 − 1)𝑛 (𝑐𝑑 − 1)𝑛 (𝑎𝑏 − 1)𝑛 = 𝑏,

𝑧10𝑛 =
𝑎(𝑒 𝑓 − 1)𝑛 (𝑐𝑑 − 1)𝑛 (𝑎𝑏 − 1)𝑛

(𝑑𝑒 − 1)𝑛 (𝑏𝑐 − 1)𝑛 = 𝑎,

𝑧10𝑛+1 =
𝑒 𝑓 (𝑑𝑒 − 1)𝑛 (𝑏𝑐 − 1)𝑛

𝑎(𝑒 𝑓 − 1)𝑛+1(𝑐𝑑 − 1)𝑛 (𝑎𝑏 − 1)𝑛
=

𝑒 𝑓

𝑎(𝑒 𝑓 − 1) ,

𝑧10𝑛+2 =
𝑑𝑎(𝑒 𝑓 − 1)𝑛+1(𝑐𝑑 − 1)𝑛 (𝑎𝑏 − 1)𝑛

𝑓 (𝑑𝑒 − 1)𝑛+1(𝑏𝑐 − 1)𝑛
=
𝑑𝑎

𝑓
,

𝑧10𝑛+3 =
𝑐 𝑓 (𝑑𝑒 − 1)𝑛+1(𝑏𝑐 − 1)𝑛

𝑎(𝑒 𝑓 − 1)𝑛+1(𝑐𝑑 − 1)𝑛+1(𝑎𝑏 − 1)𝑛
=
𝑐 𝑓

𝑎
,

𝑧10𝑛+4 =
𝑏𝑎(𝑒 𝑓 − 1)𝑛+1(𝑐𝑑 − 1)𝑛+1(𝑎𝑏 − 1)𝑛

𝑓 (𝑑𝑒 − 1)𝑛+1(𝑏𝑐 − 1)𝑛+1
=

𝑏𝑎

𝑓 (𝑏𝑎 − 1) ,

then

𝑐𝑑 = 2, 𝑎 = 𝑐 𝑎𝑛𝑑 𝑑 = 𝑓 .

Second assume that 𝑐𝑑 = 2, 𝑎 = 𝑐 𝑎𝑛𝑑 𝑑 = 𝑓 . Then we see from the form of the solution of

Eq.(4.1) that

𝑧10𝑛−5 =
𝑓 (𝑑𝑒 − 1)𝑛 (𝑏𝑐 − 1)𝑛

(𝑒 𝑓 − 1)𝑛 (𝑐𝑑 − 1)𝑛 (𝑎𝑏 − 1)𝑛 =
𝑓 (𝑒 𝑓 − 1)𝑛 (𝑏𝑐 − 1)𝑛

(𝑒 𝑓 − 1)𝑛 (2 − 1)𝑛 (𝑏𝑐 − 1)𝑛 = 𝑓 ,

𝑧10𝑛−4 =
𝑒(𝑒 𝑓 − 1)𝑛 (𝑐𝑑 − 1)𝑛 (𝑎𝑏 − 1)𝑛

(𝑑𝑒 − 1)𝑛 (𝑏𝑐 − 1)𝑛 =
𝑒(𝑒 𝑓 − 1)𝑛 (2 − 1)𝑛 (𝑎𝑏 − 1)𝑛

(𝑒 𝑓 − 1)𝑛 (𝑎𝑏 − 1)𝑛 = 𝑒,

𝑧10𝑛−3 =
𝑑 (𝑑𝑒 − 1)𝑛 (𝑏𝑐 − 1)𝑛

(𝑒 𝑓 − 1)𝑛 (𝑐𝑑 − 1)𝑛 (𝑎𝑏 − 1)𝑛 =
𝑑 (𝑒 𝑓 − 1)𝑛 (𝑎𝑏 − 1)𝑛

(𝑒 𝑓 − 1)𝑛 (2 − 1)𝑛 (𝑎𝑏 − 1)𝑛 = 𝑑.

Similarly, we can do the other relations. �
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Theorem 6. The equilibrium points of Eq.(4.1) are 0,±
√
2 and they are not locally asymptotically

stable.

Proof. The equilibrium point of Eq.(4.1) is given by

𝑧∗ =
𝑧∗
2

𝑧∗(−1 + 𝑧∗2)
,

then

(2 − 𝑧∗
2)𝑧∗2 = 0,

then 0,±
√
2 are the equilibrium points

Define the function 𝐹 by

𝐹 (𝑥, 𝑦, 𝑤) = 𝑦𝑤

𝑥(−1 + 𝑦𝑤) .

Then it follows that

𝐹𝑥 (𝑥, 𝑦, 𝑤) =
−𝑦𝑤

𝑥2(−1 + 𝑦𝑤)
, 𝐹𝑦 (𝑥, 𝑦, 𝑤) =

−𝑤
𝑥(−1 + 𝑦𝑤)2

,

𝐹𝑤 (𝑥, 𝑦, 𝑤) =
−𝑦

𝑥(−1 + 𝑦𝑤)2
.

We see that

𝐹𝑥 (𝑧∗, 𝑧∗, 𝑧∗) = −1, 𝐹𝑦 (𝑧∗, 𝑧∗, 𝑧∗) = −1, 𝐹𝑤 (𝑧∗, 𝑧∗, 𝑧∗) = −1.

By using Theorem (1), the proof is completed. �

Numerical Example:

We present some numerical examples that illustrate different types of solutions of Eq.(4.1).

Example 2. See Figure 2, when we take 𝑧−5 = 5, 𝑧−4 = 14, 𝑧−3 = 6, 𝑧−2 = 0.2, 𝑧−1 = 1, 𝑧0 = 7.

Example 3. See Figure 3, if we put 𝑧−5 = 10, 𝑧−4 = 14, 𝑧−3 = 10, 𝑧−2 = 0.2, 𝑧−1 = −8, 𝑧0 = 0.2.

The following cases can be treated similarly:-
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Page 15

https://www.lynnp.org


Pure and Applicable Analysis 2023, 2023: 3 https://www.lynnp.org

5 Qualitative Behavior of Solutions of 𝑧𝑛+1= 𝑧𝑛−4𝑧𝑛−5
𝑧𝑛(1−𝑧𝑛−4𝑧𝑛−5)

In this section, we obtain the expressions for the solution of the difference equation of the form:

𝑧𝑛+1=
𝑧𝑛−4𝑧𝑛−5

𝑧𝑛 (1 − 𝑧𝑛−4𝑧𝑛−5)
, 𝑛 = 0, 1, 2, ..., (5.1)

where the initial conditions 𝑧−5, 𝑧−4, 𝑧−3, 𝑧−2, 𝑧−1 and 𝑧0 are arbitrary non-zero real numbers.

Theorem 7. Let {𝑧𝑛}∞𝑛=−5 be a solution of difference equation (5.1). Then for 𝑛 = 0, 1, ...,

𝑧10𝑛−5 = 𝑓

𝑛−1∏
𝑗=0

[1 − 2 𝑗𝑎𝑏] [1 − 2 𝑗𝑐𝑑] [1 − 2 𝑗 𝑒 𝑓 ] [1 − (2 𝑗 + 1)𝑏𝑐] [1 − (2 𝑗 + 1)𝑑𝑒]
[1 − (2 𝑗 + 1)𝑎𝑏] [(1 − (2 𝑗 + 1)𝑐𝑑] [1 − (2 𝑗 + 1)𝑒 𝑓 ] [1 − 2 𝑗 𝑏𝑐] [1 − 2 𝑗 𝑑𝑒] ,

𝑧10𝑛−4 = 𝑒

𝑛−1∏
𝑗=0

[1 − (2 𝑗 + 1)𝑎𝑏] [(1 − (2 𝑗 + 1)𝑐𝑑] [1 − (2 𝑗 + 1)𝑒 𝑓 ] [1 − 2 𝑗 𝑏𝑐] [1 − 2 𝑗 𝑑𝑒]
[1 − 2 𝑗𝑎𝑏] [1 − 2 𝑗𝑐𝑑] [1 − 2( 𝑗 + 1)𝑒 𝑓 ] [1 − (2 𝑗 + 1)𝑏𝑐] [1 − (2 𝑗 + 1)𝑑𝑒] ,

𝑧10𝑛−3 = 𝑑

𝑛−1∏
𝑗=0

[1 − 2 𝑗𝑎𝑏] [1 − 2 𝑗𝑐𝑑] [1 − 2( 𝑗 + 1)𝑒 𝑓 ] [1 − (2 𝑗 + 1)𝑏𝑐] [1 − (2 𝑗 + 1)𝑑𝑒]
[1 − (2 𝑗 + 1)𝑎𝑏] [(1 − (2 𝑗 + 1)𝑐𝑑] [1 − (2 𝑗 + 1)𝑒 𝑓 ] [1 − 2 𝑗 𝑏𝑐] [1 − 2( 𝑗 + 1)𝑑𝑒] ,

𝑧10𝑛−2 = 𝑐

𝑛−1∏
𝑗=0

[1 − (2 𝑗 + 1)𝑎𝑏] [(1 − (2 𝑗 + 1)𝑐𝑑] [1 − (2 𝑗 + 1)𝑒 𝑓 ] [1 − 2 𝑗 𝑏𝑐] [1 − 2 𝑗 𝑑𝑒]
[1 − 2 𝑗𝑎𝑏] [1 − 2( 𝑗 + 1)𝑐𝑑] [1 − 2( 𝑗 + 1)𝑒 𝑓 ] [1 − (2 𝑗 + 1)𝑏𝑐] [1 − (2 𝑗 + 1)𝑑𝑒] ,

𝑧10𝑛−1 = 𝑏

𝑛−1∏
𝑗=0

[1 − 2 𝑗𝑎𝑏] [1 − 2( 𝑗 + 1)𝑐𝑑] [1 − 2( 𝑗 + 1)𝑒 𝑓 ] [1 − (2 𝑗 + 1)𝑏𝑐] [1 − (2 𝑗 + 1)𝑑𝑒]
[1 − (2 𝑗 + 1)𝑎𝑏] [(1 − (2 𝑗 + 1)𝑐𝑑] [1 − (2 𝑗 + 1)𝑒 𝑓 ] [1 − 2( 𝑗 + 1)𝑏𝑐] [1 − 2( 𝑗 + 1)𝑑𝑒] ,

𝑧10𝑛 = 𝑎

𝑛−1∏
𝑗=0

[1 − (2 𝑗 + 1)𝑎𝑏] [(1 − (2 𝑗 + 1)𝑐𝑑] [1 − (2 𝑗 + 1)𝑒 𝑓 ] [1 − 2( 𝑗 + 1)𝑏𝑐] [1 − 2( 𝑗 + 1)𝑑𝑒]
[1 − 2( 𝑗 + 1)𝑎𝑏] [1 − 2( 𝑗 + 1)𝑐𝑑] [1 − 2( 𝑗 + 1)𝑒 𝑓 ] [1 − (2 𝑗 + 1)𝑏𝑐] [1 − (2 𝑗 + 1)𝑑𝑒] ,

𝑧10𝑛+1 =
𝑒 𝑓

𝑎(𝑒 𝑓 + 1)

𝑛−1∏
𝑗=0

[1 − 2( 𝑗 + 1)𝑎𝑏] [1 − 2( 𝑗 + 1)𝑐𝑑] [1 − 2( 𝑗 + 1)𝑒 𝑓 ] [1 − (2 𝑗 + 1)𝑏𝑐]
[1 − (2 𝑗 + 1)𝑎𝑏] [1 − (2 𝑗 + 1)𝑐𝑑] [1 − (2 𝑗 + 3)𝑒 𝑓 ] [1 − 2( 𝑗 + 1)𝑏𝑐]

× [1 − (2 𝑗 + 1)𝑑𝑒]
[1 − 2( 𝑗 + 1)𝑑𝑒] ,
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𝑧10𝑛+2 =
𝑑𝑎(1 − 𝑒 𝑓 )
𝑓 (1 − 𝑑𝑒)

𝑛−1∏
𝑗=0

[1 − (2 𝑗 + 1)𝑎𝑏] [1 − (2 𝑗 + 1)𝑐𝑑] [1 − (2 𝑗 + 3)𝑒 𝑓 ] [1 − 2( 𝑗 + 1)𝑏𝑐]
[1 − 2( 𝑗 + 1)𝑎𝑏] [1 − 2( 𝑗 + 1)𝑐𝑑] [1 − 2( 𝑗 + 1)𝑒 𝑓 ] [1 − (2 𝑗 + 1)𝑏𝑐]

× [1 − 2( 𝑗 + 1)𝑑𝑒]
[1 − (2 𝑗 + 3)𝑑𝑒] ,

𝑧10𝑛+3 =
𝑐 𝑓 (1 − 𝑑𝑒)

𝑎(1 − 𝑒 𝑓 ) (1 − 𝑐𝑑)

𝑛−1∏
𝑗=0

[1 − 2( 𝑗 + 1)𝑎𝑏] [1 − 2( 𝑗 + 1)𝑐𝑑] [1 − 2( 𝑗 + 1)𝑒 𝑓 ]
[1 − (2 𝑗 + 1)𝑎𝑏] [1 − (2 𝑗 + 3)𝑐𝑑] [1 − (2 𝑗 + 3)𝑒 𝑓 ]

× [1 − (2 𝑗 + 1)𝑏𝑐] [1 − (2 𝑗 + 3)𝑑𝑒]
[1 − 2( 𝑗 + 1)𝑏𝑐] [1 − 2( 𝑗 + 1)𝑑𝑒] ,

𝑧10𝑛+4 =
𝑏𝑎(1 − 𝑒 𝑓 ) (1 − 𝑐𝑑)
𝑓 (1 − 𝑑𝑒) (1 − 𝑏𝑐)

𝑛−1∏
𝑗=0

[1 − (2 𝑗 + 1)𝑎𝑏] [1 − (2 𝑗 + 3)𝑐𝑑] [1 − (2 𝑗 + 3)𝑒 𝑓 ]
[1 − 2( 𝑗 + 1)𝑎𝑏] [1 − 2( 𝑗 + 1)𝑐𝑑] [1 − 2( 𝑗 + 1)𝑒 𝑓 ]

× [1 − 2( 𝑗 + 1)𝑏𝑐] [1 − 2( 𝑗 + 1)𝑑𝑒]
[1 − (2 𝑗 + 3)𝑏𝑐+] [1 − (2 𝑗 + 3)𝑑𝑒] .

where 𝑥−5 = 𝑓 , 𝑥−4 = 𝑒, 𝑥−3 = 𝑑, 𝑥−2 = 𝑐, 𝑥−1 = 𝑏, 𝑥0 = 𝑎.

Theorem 8. The equilibrium point of Eq.(5.1) is 0 and it is not locally asymptotically stable.

Example 4. If we put the initial conditions of Eq.(5.1) as follows: 𝑧−5 = 3, 𝑧−4 = 13, 𝑧−3 = 9,

𝑧−2 = −4, 𝑧−1 = 2, 𝑧0 = 8. See the following Figure:

6 Qualitative Behavior of Solutions of 𝑧𝑛+1 = 𝑧𝑛−4𝑧𝑛−5
𝑧𝑛(−1−𝑧𝑛−4𝑧𝑛−5)

In this section, we obtain the solution of the following difference equation

𝑧𝑛+1=
𝑧𝑛−4𝑧𝑛−5

𝑧𝑛 (−1 − 𝑧𝑛−4𝑧𝑛−5)
, (6.1)

where the initial conditions 𝑧−5, 𝑧−4, 𝑧−3, 𝑧−2, 𝑧−1 and 𝑧0 are arbitrary non-zero real numbers.

Theorem 9. Suppose that {𝑧𝑛} be a solution of Eq.(6.1) where the initial value 𝑧−5, 𝑧−4, 𝑧−3, 𝑧−2, 𝑧−1

and 𝑧0 are non-zero real numbers with 𝑧−1𝑧0, 𝑧−2𝑧−1, 𝑧−3𝑧−2, 𝑧−3𝑧−4, 𝑧−5𝑧−4 ≠ −1. Then the

solution of Eq.(6.1) have the form

Page 17

https://www.lynnp.org


Pure and Applicable Analysis 2023, 2023: 3 https://www.lynnp.org

0 5 10 15 20 25 30 35 40 45 50

n

-4

-2

0

2

4

6

8

10

12

14

x
(n

)

plot of z
n+1

= Z
n-4

 Z
n-5

/Z
n
(1-Z

n-4
 Z

n-5
)

Figure 4:

𝑧10𝑛−5 =
𝑓 (−𝑑𝑒 − 1)𝑛 (−𝑏𝑐 − 1)𝑛

(−𝑒 𝑓 − 1)𝑛 (−𝑐𝑑 − 1)𝑛 (−𝑎𝑏 − 1)𝑛 ,

𝑧10𝑛−4 =
𝑒(−𝑒 𝑓 − 1)𝑛 (−𝑐𝑑 − 1)𝑛 (−𝑎𝑏 − 1)𝑛

(−𝑑𝑒 − 1)𝑛 (−𝑏𝑐 − 1)𝑛 ,

𝑧10𝑛−3 =
𝑑 (−𝑑𝑒 − 1)𝑛 (−𝑏𝑐 − 1)𝑛

(−𝑒 𝑓 − 1)𝑛 (−𝑐𝑑 − 1)𝑛 (−𝑎𝑏 − 1)𝑛 ,

𝑧10𝑛−2 =
𝑐(−𝑒 𝑓 − 1)𝑛 (−𝑐𝑑 − 1)𝑛 (−𝑎𝑏 − 1)𝑛

(−𝑑𝑒 − 1)𝑛 (−𝑏𝑐 − 1)𝑛 ,

𝑧10𝑛−1 =
𝑏(−𝑑𝑒 − 1)𝑛 (−𝑏𝑐 − 1)𝑛

(−𝑒 𝑓 − 1)𝑛 (−𝑐𝑑 − 1)𝑛 (−𝑎𝑏 − 1)𝑛 ,

𝑧10𝑛 =
𝑎(−𝑒 𝑓 − 1)𝑛 (−𝑐𝑑 − 1)𝑛 (−𝑎𝑏 − 1)𝑛

(−𝑑𝑒 − 1)𝑛 (−𝑏𝑐 − 1)𝑛 ,

𝑧10𝑛+1 =
𝑒 𝑓 (−𝑑𝑒 − 1)𝑛 (−𝑏𝑐 − 1)𝑛

𝑎(−𝑒 𝑓 − 1)𝑛+1(−𝑐𝑑 − 1)𝑛 (−𝑎𝑏 − 1)𝑛
,
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𝑧10𝑛+2 =
𝑑𝑎(−𝑒 𝑓 − 1)𝑛+1(−𝑐𝑑 − 1)𝑛 (−𝑎𝑏 − 1)𝑛

𝑓 (−𝑑𝑒 − 1)𝑛+1(−𝑏𝑐 − 1)𝑛
,

𝑧10𝑛+3 =
𝑐 𝑓 (−𝑑𝑒 − 1)𝑛+1(−𝑏𝑐 − 1)𝑛

𝑎(−𝑒 𝑓 − 1)𝑛+1(−𝑐𝑑 − 1)𝑛+1(−𝑎𝑏 − 1)𝑛
,

𝑧10𝑛+4 =
𝑏𝑎(−𝑒 𝑓 − 1)𝑛+1(−𝑐𝑑 − 1)𝑛+1(−𝑎𝑏 − 1)𝑛

𝑓 (−𝑑𝑒 − 1)𝑛+1(−𝑏𝑐 − 1)𝑛+1
,

where 𝑧−5 = 𝑓 , 𝑧−4 = 𝑒, 𝑧−3 = 𝑑, 𝑧−2 = 𝑐, 𝑧−1 = 𝑏, 𝑧0 = 𝑎.

Theorem 10. The difference equation (6.1) has equilibrium point which is 0 and it is not locally

asymptotically stable.

Theorem 11. The difference equation (6.1) has a periodic solution of periodic ten iff 𝑐𝑑 = −2,

𝑎 = 𝑐 and 𝑑 = 𝑓 and takes the form

{ 𝑓 , 𝑒, 𝑑, 𝑐, 𝑏, 𝑎, 𝑒 𝑓

𝑎(−𝑒 𝑓 − 1) ,
𝑑𝑎

𝑓
,
𝑐 𝑓

𝑎
,

𝑏𝑎

𝑓 (−𝑏𝑎 − 1) , 𝑓 , 𝑒, 𝑑, 𝑐, 𝑏, ...}.

Example 5. The following Figure shows the behavior of the solutions of Eq.(6.1) since 𝑧−5 = 8,

𝑧−4 = 15, 𝑧−3 = 4, 𝑧−2 = −2, 𝑧−1 = 5, 𝑧0 = 6.

Example 6. Figure 6 shows the period ten solutions of Eq.(6.1) since 𝑧−5 = −8, 𝑧−4 = 15, 𝑧−3 = −8,

𝑧−2 = 0.25, 𝑧−1 = 5, 𝑧0 = 0.25.
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Conclusion 1. This paper discussed the expression’s form of some rational six order difference

equations. In section 3, we study some properties of the following recursive equation in the form

𝑧𝑛+1 =
𝑧𝑛−4𝑧𝑛−5

𝑧𝑛 (1+𝑧𝑛−4𝑧𝑛−5) , , first we have got the form of the solutions of this equation, studied the

equilibrium point and gave numerical example and drew it by using Matlab. In Section 4, we

have got the solution’s of the equation 𝑧𝑛+1 =
𝑧𝑛−4𝑧𝑛−5

𝑧𝑛 (−1+𝑧𝑛−4𝑧𝑛−5)and take numerical examples. In

Sections 5–6, we obtained the solution of the following equationes respectively, 𝑧𝑛+1= 𝑧𝑛−4𝑧𝑛−5
𝑧𝑛 (1−𝑧𝑛−4𝑧𝑛−5) ,

𝑧𝑛+1 =
𝑧𝑛−4𝑧𝑛−5

𝑧𝑛 (−1−𝑧𝑛−4𝑧𝑛−5) . Also, in each case we take numerical examples to illustrates the results.
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